The Value of Real-Time Data, Part 3

The operations/process environment differs from the administrative and financial environments in that operations is charged with getting the job done. As such, the requirements placed on computers, information systems, instrumentation, controls, and data is different too. Data is never ‘in balance’, data always carries uncertainty, and the process cannot stop. Operations personally have learned to perform their job while waiting for systems to come online, waiting for systems to upgrade, or even waiting for systems to be invented.

Once online, systems must be up 100% of the time, but aren’t. Systems must process data from a myriad of sources, but those sources are frequently intermit or sporadic. Thus the processing, utilization, storage, and analysis of real-time data is a challenge totally unlike the systems seen in administrations or financial operations.

Real time systems must address distinct channels of data flow – from the immediate to the analysis of terabytes of archived data.

Control and Supervision: Real-time data is used to provide direct HMI (human-machine-interface) and permit the human computer to monitor / control the operations from his console. The control and supervision phase of real-time data does not, as part of its function, record the data. (However, certain data logs may be created for legal or application development purposes.) Machine control and control feedback loops require, as a minimum, real-time data of sufficient quality to provide steady operational control.

Forensic Analysis and Lessons Learned: Captured data (and, to a lesser extent, data and event logs) are utilized to investigate specific performance metrics and operations issues. Generally, this data is kept in some form for posterity, but it may be filtered, processed, or purged. Nevertheless, the forensic utilization does represent post-operational analytics. Forensic analysis is also critical to prepare an operator for an upcoming similar process – similar in function, geography, or sequence.

Data Mining: Data mining is used to research previous operational events to locate trends, areas for improvement, and prepare for upcoming operations. Data mining is used identify a bottleneck or problem area as well as correlate events that are less than obvious.

Proactive / Predictive Analytics: The utilization of data streams, both present and previous, in an effort to predict the immediate (or distant) future requires historical data, data mining, and the application of learned correlations. Data mining may provide correlated events and properties, but the predictive analytics will provide the conversion of the correlations into positive, immediate performance and operational changes. (This utilization is not, explicitly AI, artificial intelligence, but the two are closely related)

The data-information-knowledge-understanding-wisdom paradigm: Within the data—>wisdom paradigm, real-time data is just that – data. The entire tree breaks out as:

  • data – raw, untempered data from the operations environment (elemental data filtering and data quality checks are, nevertheless, required).
  • information – presentation of the data in human comprehensible formats – the control and supervision phase of real-time data.
  • knowledge – forensic analytics, data mining, and correlation analysis
  • understanding – proactive and forward-looking changes in behavior characteristic of the proactive / predictive analytics phase.
  • wisdom – the wisdom phase remains the domain of the human computer.

Related Posts:

Data Mining and Data, Information, Understanding, Knowledge

The Digital Oilfield, Part 1

The Data-Information Hierarchy